Extensions 1→N→G→Q→1 with N=D36 and Q=C22

Direct product G=NxQ with N=D36 and Q=C22
dρLabelID
C22xD36144C2^2xD36288,354

Semidirect products G=N:Q with N=D36 and Q=C22
extensionφ:Q→Out NdρLabelID
D36:1C22 = D8xD9φ: C22/C1C22 ⊆ Out D36724+D36:1C2^2288,120
D36:2C22 = D72:C2φ: C22/C1C22 ⊆ Out D36724+D36:2C2^2288,124
D36:3C22 = C2xD72φ: C22/C2C2 ⊆ Out D36144D36:3C2^2288,114
D36:4C22 = C8:D18φ: C22/C2C2 ⊆ Out D36724+D36:4C2^2288,118
D36:5C22 = C2xD4:D9φ: C22/C2C2 ⊆ Out D36144D36:5C2^2288,142
D36:6C22 = D36:6C22φ: C22/C2C2 ⊆ Out D36724D36:6C2^2288,143
D36:7C22 = C2xD4xD9φ: C22/C2C2 ⊆ Out D3672D36:7C2^2288,356
D36:8C22 = D4:6D18φ: C22/C2C2 ⊆ Out D36724D36:8C2^2288,358
D36:9C22 = C2xQ8:3D9φ: C22/C2C2 ⊆ Out D36144D36:9C2^2288,360
D36:10C22 = C4oD4xD9φ: C22/C2C2 ⊆ Out D36724D36:10C2^2288,362
D36:11C22 = D4:8D18φ: C22/C2C2 ⊆ Out D36724+D36:11C2^2288,363
D36:12C22 = C2xD36:5C2φ: trivial image144D36:12C2^2288,355

Non-split extensions G=N.Q with N=D36 and Q=C22
extensionφ:Q→Out NdρLabelID
D36.1C22 = D8:D9φ: C22/C1C22 ⊆ Out D36724D36.1C2^2288,121
D36.2C22 = SD16xD9φ: C22/C1C22 ⊆ Out D36724D36.2C2^2288,123
D36.3C22 = SD16:3D9φ: C22/C1C22 ⊆ Out D361444D36.3C2^2288,126
D36.4C22 = Q16:D9φ: C22/C1C22 ⊆ Out D361444D36.4C2^2288,128
D36.5C22 = D72:5C2φ: C22/C1C22 ⊆ Out D361444+D36.5C2^2288,129
D36.6C22 = C2xC72:C2φ: C22/C2C2 ⊆ Out D36144D36.6C2^2288,113
D36.7C22 = D72:7C2φ: C22/C2C2 ⊆ Out D361442D36.7C2^2288,115
D36.8C22 = C8.D18φ: C22/C2C2 ⊆ Out D361444-D36.8C2^2288,119
D36.9C22 = C2xQ8:2D9φ: C22/C2C2 ⊆ Out D36144D36.9C2^2288,152
D36.10C22 = C36.C23φ: C22/C2C2 ⊆ Out D361444D36.10C2^2288,153
D36.11C22 = D4:D18φ: C22/C2C2 ⊆ Out D36724+D36.11C2^2288,160
D36.12C22 = D4.9D18φ: C22/C2C2 ⊆ Out D361444D36.12C2^2288,161
D36.13C22 = Q8.15D18φ: C22/C2C2 ⊆ Out D361444D36.13C2^2288,361
D36.14C22 = D4.10D18φ: trivial image1444-D36.14C2^2288,364

׿
x
:
Z
F
o
wr
Q
<